COMBATSIM.COM: The Ultimate Combat Simulation and Strategy Gamers' Resource.
 

Israel Aircraft Industries Lavi
  During the fifties and sixties the Tsvah Haganah Le Israel - Heyl Ha'Avir (Israel Defence Force/Air Force (IDF/AF)) relied on France for its combat aircraft. When, after the Six Day War (5 to 10 June 1967), France did not deliver the 50 Dassault Mirage 5Js Israel had ordered and paid for, Israel decided to develop its own combat aircraft. The first such attempt resulted in the Israel Aircraft Industries (IAI) Kfir (Lion Cub), a multi-role fighter developed from the Mirage 5, of which a total of 212 were produced. To replace the Kfir, Israel developed the Lavi (Young Lion).

Development

Israel has been embroiled in more wars in recent times than any other nation, with the result that Israeli pilots are very combat experienced, and most likely to know exactly what they want in a fighter, within the constrains of affordability. When, in 1979, the Lavi programme was announced, a great deal of interest was aroused for these reasons. The Lavi programme was launched in February 1980 for a multi-role combat aircraft. The Lavi was intended primarly for the close air support (CAS) and battlefield air interdiction (BAI) mission with a secondary air-defence mission. The two-seat version could be used as a conversion trainer.

As orginally conceived, the Lavi was to have been a light attack aircraft to replace the eldery McDonnell Douglas A-4 Skyhawk, the McDonnell Douglas F-4 Phantom II and the IAI Kfir, remaining in service with the IDF/AF. A single-seater, powered by a General Electric F404 turbofan, it was soon perceived that this solution gave no margin for future growth, and an alternative engine was choosen, the much more powerful Pratt & Whitney PW1120. With the extra power came demands for greater capability, until the Lavi began to rival the F-16, which was already in service with the IDF/AF.

The full-scale development (FSD) phase of the Lavi began in October 1982. Orginally, the maximum take-off weight was projected as 17,000 kg, but studies showed that with only a few design changes, and thus a slight increase in weight, the Lavi could carry more armament. The prize was tried to kept at the same level. With a prospective IDF/AF requirement for up to 300 aircraft (including 60 combat-capable two-seaters), the full-scale development (FSD) phase was to involve five prototypes (B-01 to B-05) of which two, B-01 and B-02, were two-seaters and three, B-03, B-04, and B-05, were single-seaters.

A full-scale mock-up of the Lavi was revealed at the beginning of 1985.

The first Lavi which was rolled out was the Lavi B-02. The Lavi B-01 was not ready in time, because it was going through the final stages of the construction for the first flight. The Lavi B-02 looked good from the outside, but it was not fitted with avionics etc.

The first Lavi (B-01) flew on 31 December 1986, piloted by IAI chief test pilot Menacachem Schmoll. The handling was described as excellent, with a high degree of stability in crosswind landings, and the flight test programme proceeded apace. The second Lavi (B-02) flew on 30 March 1987. Both Lavi B-01 and Lavi B-02 were tandem two-seaters, with the rear cockpit occupied by test equipment and were not equipped with the full avionics fit and used mainly for aerodynamic testing.

Then, on 30 August 1987, the Lavi programme was cancelled, after Lavi B-01 and Lavi B-02 had made more than 80 flights. The two prototypes had flown at speeds from 204 km/h up to Mach 1.45 at 23o angle of attack. Most systems, including the digital flight control, were tested within this envelope.

The third Lavi (B-03) and subsequent Lavi prototypes (B-04 and B-05) would be fitted with the definitive wing with increased elevon chord and the last three prototypes would also have the complete mission-adaptive avionics system. Lavi B-04 and Lavi B-05 were just about to receive the definitive wing when the programme was cancelled.

The first production aircraft were intended to be delivered in 1990 and initial operational capability (IOC) was planned for 1992. At the height of the production, a total of twelve aircraft would be produced in one month. The Lavi would have been the most important aircraft of the IDF/AF in the nineties.

Click to continue . . .

 

Lavi

Structure

Comparisons with the Lockheed Martin F-16 Fighting Falcon are inevitable, as the US fighter made a handy yardstick. The Lavi was rather smaller and lighter, with a less powerful powerplant, and the thrust-to-weight ratio was slightly lower across the board. The configuration adopted was that of a tail-less canard delta, although the wing was unusual in having shallow sweep on the trailing edge, giving a fleche planform.

The straight leading edge was swept at 54 degrees, with manoeuvre flaps on the ourboard sections. The tips were cropped and fitted with missile rails to carry the Rafael Python 3 air-to-air missile. Two piece flaperons occupied most of the trailing edge, which was blended into the fuselage with long fillets. The wing area was 38.50 square metres, 38 per cent greater than the wing area of the F-16, giving an almost exactly proportional lower wing loading, while the aspect ratio at 2.10, was barely two-thirds that of the F-16.

Pitch control was provided by single piece, all-moving canard surfaces, located slightly astern of and below the pilot where they would cause minimal obstruction in vision. Grumman was responsible for the design and development of the wing and the fin, and would produced at least the first 20 wings and fins.

Predictably, relaxed static stability and quadruplex fly-by-wire (FBW), with no mechanical backup was used, linked to nine different control surfaces to give a true control configured vehicle (CCV). In comparison with the F-16, the Lavi is very unstable, with an instability of 10 to 12 per cent. The surfaces were programmed to give minimum drag in all flight regimes, while providing optimum handling and agility. It was stated that the Lavi had an inherent direct lift control capability, although this was never demonstrated.

The powerplant intake was a plain chin type scoop, similar to that of the F-16, which was known to be satisfactory at high alpha and sideslip angles. The landing gear was lightweight, the nose wheel was located aft of the intake and retracting rearwards, and the main gear was fuselage mounted, giving a rather narrow track. The sharply swept vertical tail, effective at high alpha due to interaction with the vortices shed by the canards, was mounted on a spine on top of the rear fuselage, and supplemented by the two steeply canted ventral srakes, mounted on the ends of the wing root fillets.

Extensive use of composites allowed aerolastic tailoring to the wings, so that the often conflicting demands of shape and rigidity could be resolved to minimise drag in all flight regimes. Composites were also used in the vertical tail, canards, and various doors and panels. A total of twenty-two per cent of the structural weight compromise composite materials. IAI claimed a significant reduction in radar cross section (RCS).

Standard practice with high performance jet aircraft is to provide a second seat for conversion training by shoehorning it in, normally at the expense of fuel or avionics, or both. IAI adopted a different approach, designing the two-seater first, and then adopting it into a single-seater, which left plenty of room for avionics growth. In fact, the first 30 production aircraft would all have been two-seaters to aid service entry. Many of these aircraft were later to have been fitted out for the suppression of enemy air-defense (SEAD) mission.

Go to Part 2

 

 

© 1997 - 2000 COMBATSIM.COM, Inc. All Rights Reserved. .
Last Updated June 9th, 1998

© 2014 COMBATSIM.COM - All Rights Reserved